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A comprehensive theoretical model for the bulk manganite system La1−x�Ca,Sr�xMnO3 is presented. The
model includes local and cooperative Jahn-Teller distortions and the on-site Coulomb and exchange interac-
tions. The model is solved in the single-site dynamical mean-field approximation using a solver based on the
semiclassical approximation. The model semiquantitatively reproduces the observed phase diagram for the
doping 0�x�0.5 and implies that the manganites are in the strong-coupling region but close to Mott insulator/
metal phase boundary. The results establish a formalism for use in a broader range of calculations, for example,
on heterostructures.
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I. INTRODUCTION

LaMnO3 crystallizes in a structure closely related to the
basic ABO3 perovskite form. As the temperature is varied it
undergoes orbital ordering and antiferromagnetic �AFM�
transitions. Replacing some of the La with divalent alkali
ions such as Ca yields an even wider range of phenomena,
including charge ordering, ferromagnetism, and colossal
magnetoresistance �CMR�.1–3 The phase diagram is summa-
rized in Fig. 1. While the manganites have been studied for
many years and much of the physics has been understood,
there is as yet no consensus in the literature on a model
which is rich enough to account for all the physics, includes
all of important interactions, and can be solved to predict �or
at least explicate� new phenomena such as those occurring in
systems such as heterostructures. In this paper we develop
such a model and explore its properties. Our results place
the materials slightly on the insulating side of the Mott
metal-insulator phase boundary. We refer to this as the
“intermediate-strong” coupling regime.

The phase diagram shown in Fig. 1 includes two magnetic
orders, A-AFM and ferromagnetic FM states, corresponding
to the Mn spin arrangements shown in Fig. 2. The A-AFM
structure consists of ferromagnetic planes antiferromagneti-
cally coupled. With our coordinate choice, each FM plane is
spanned by x̂ and ŷ while the remaining direction is ẑ. The
orbital order in this context refers to a particular distortion
arrangement where the oxygen octahedra have in-plane stag-
gered �x-y plane� Qx Jahn-Teller �JT� distortions plus a uni-
form −Qz distortion �the minus sign represents the octahe-
dron shrinking in z while expanding in x-y directions� �Fig.
2�. The metal �M�/insulator �I� phase boundary is determined
from the dc resistivity. The definition of metal or insulator is
ambiguous. Here we adopt the definition that the system is
metallic or insulating at a given temperature if the tempera-
ture derivative of resistivity is positive or negative, respec-
tively.

In this paper, we present a model which captures all of the
physics discussed above and solve it by using the single-site
dynamical mean-field theory �DMFT�.4 There are two main
purposes for this study. First, although basic understanding
for exhibited phases at a given doping is known, it is impor-
tant to determine the extent to which the general model with

a fixed set of parameters matches the observed phase dia-
gram. Second, we wish to apply this theory to understand the
behavior of the recently synthesized manganite
superlattices.5,6

Solving a theoretical model ordinarily requires approxi-
mations. Here we use the single-site DMFT.4 This approxi-
mation requires as an intermediate step the solution of a
quantum impurity model. In this paper we solve the impurity
model using a generalization of the semiclassical approxima-
tion �SCA�.7 We generalize it to the two-band case and de-
velop a formalism for incorporating the cooperative JT effect
into the single-site DMFT. We semiquantitatively reproduce
the observed phase diagram for 0�x�0.5 and identify the
sources of the observed phases. Our calculation yields three
main results. First, our calculation suggests that the problem
is in the strong-intermediate coupling regime in the sense
that under the single-site DMFT approximation the local in-
teraction strength is slightly larger than the critical value
needed to drive a metal-insulator transition. Consequently
the system is very sensitive to the mechanisms governing the
bandwidth such as magnetic order and details of crystal
structure. Second, the cooperative Jahn-Teller effect is the
main source accounting for the observed high orbital-
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FIG. 1. The experimental phase diagram as a function of doping
x and temperature T. PO: paraorbital; PM: paramagnetic; FM: fer-
romagnetic; OO: orbitally ordered; A-AFM: A-type antiferromag-
netic. See text for the descriptions of the phases.
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ordering temperature. Finally, our calculation confirms that
when the doping is increased to the CMR region x�0.3 �N
�0.7�, the double-exchange �DE� mechanism becomes
dominant.

The rest of the paper is organized as follows. We first
present the model and the interactions included. After pro-
viding key steps for our approximation, we show how we fit
parameters and then present the results. Discussion concern-
ing the inadequacies of our model or approximation and dif-
ferences between the calculation and the experiments is
given in Sec. VII. Section VIII is a conclusion. In Appen-
dixes A and B we examine the validity of the SCA and give
details of the procedure we use to take the cooperative Jahn-
Teller effect into account.

II. MODEL HAMILTONIAN

In this section we describe the interactions included in our
model and define terms and notations which shall be used for
the rest of the paper.

A. Tight binding

The band structure is described by a tight-binding model
where only nearest-neighbor hopping between eg orbitals is
included. A justification for this approximation is given in
Ref. 8. Two eg orbitals are labeled as �1�= �3z2−r2� and �2�
= �x2−y2�. This implies a band Hamiltonian which may be
written as

Hband = �
k�,ab,�

�k�,ab,�ck�,a,�
† ck�,b,�. �1�

�k�,ab,�=−t��0ê+�z�̂z+�x�̂x�ab, where �̂ are Pauli matrices, ê is
the unit matrix and �0=cos kx+cos ky +cos kz, �z=cos kz

− 1
2 �cos kx+cos ky�, and �x=

�3
2 �cos kx−cos ky�. a and b label

orbitals, i and j label sites, and � label spins. We emphasize
that what are denoted here as two eg orbitals are actually the
antibonding combination of Mn 3d and its neighboring oxy-
gen 2p ��-bond� states.8

B. On-site electron-electron

For the on-site interaction within eg orbitals, we use the
Goodenough-Kanamori-Slater approximation in which the
form of interaction is the same as in the free atom. Two
independent parameters conventionally denoted as U and J
are required to specify this interaction. It is generally
accepted9 that the charging energy U may be strongly renor-
malized by solid-state effects, whereas the interorbital-
exchange energy J is less affected. The electron-electron
�e-e� interaction within the eg multiplet is

He-e = �
�,��

�U − J�n1,�n2,�� + U �
i=1,2

ni,↑ni,↓ + J�c1,↑
† c1,↓

† c2,↓c2,↑

+ H.c.� − 2JS�1 · S�2, �2�

where S�1�2�=�� 	
c1�2�,	
† c1�2�,
. The J�c1,↑

† c1,↓
† c2,↓c2,↑+H.c.�

term is referred to as the pair hopping and the −2JS�1 ·S�2 term
is the exchange.

C. Hund’s coupling

The coupling between Mn eg and Mn t2g electrons is ap-
proximated by HHund in which three t2g electrons are treated
as an electrically inert “core spin” of magnitude S= �3 /2��.
We shall further approximate the core spin as classical and

normalize JH by taking �S� �=1, leading to

HHund = − JH�
i

S� i · ci,	
† �� 	
ci,
, �3�

where JH�0 and �S� �=1. The minus sign ensures that the
high-spin state is energy favored in accordance with Hund’s
rule.

D. Lattice elastic energy

For the lattice degree of freedom, we consider Mn mo-

tions in arbitrary directions �� i� and oxygen only along

Mn-O ��� bond direction �ui,x� �Refs. 10 and 11� where � i
and ui,x are illustrated in Fig. 3. The general lattice elastic
energy in the harmonic approximation is

Hlat =
1

2KMn-O
�
i,a

��i
a − ui

a�2 + �i
a − ui−a

a �2	 �4�

FIG. 2. �Color online� Illustrations of FM, A-AFM, and orbital
orders. The filled and open circles represent manganese and oxygen,
respectively. The light arrows stand for the core-spin orientation at
each plane. Upper left panel: Illustration of two magnetic orders.
For FM, the spins at different planes are aligned in the same direc-
tion, while for A-AFM, the spins at adjacent planes are arranged
oppositely. Upper right panel: Illustration of the in-plane staggered
Qx order. The double arrows represent the long O-Mn-O distance
caused by the Qx distortion. Lower panel: Illustration of the uniform
−Qz order. The system uniformly shrinks in the z direction while it
expands in x-y.
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+
1

2 �
k�,ab

Eab�k��k�
a
−k�

b +
1

2 �
k�,ab

Dab�k��uk�
au−k�

b , �5�

where 1 /KMn-O is spring constant between neighboring man-
ganese and oxygen, while Eab�k�� and Dab�k�� are general
Mn-Mn and O-O couplings in k space. In the specific nu-
merical calculations presented here, we set Eab�k��=0 and
Dab�k��= 4

kMn-Mn
ab sin2�ka /2�, but effects arising from a more

general interaction are discussed. With our convention, u, � ,
and lattice constants K all have dimension of energy.

E. Electron-lattice coupling

The breathing �Q0� and JT �Qx ,Qz� modes at site i are
defined by

Qi,0 =
1
�3

�vi,x + vi,y + vi,z� ,

Qi,x =
1
�2

�vi,x − vi,y� ,

Qi,z =
1
�6

�− vi,x − vi,y + 2vi,z� , �6�

where vi,a=ui,a−ui−a,a. The eg orbitals couple to these three
modes as

HJT = − �
i,a,b

�Qi,x�ab
x + Qi,z�ab

z �ci,a
† ci,b, �7�

HB = − 
Qi,0�ni − 
n�� , �8�

where 
 is dimensionless and positive. We will take 
=1,
which simplifies the discussion of cooperative Jahn-Teller
effect. In this paper we treat HB by a mean-field approxima-
tion, so it is only important when the charge distribution is
not uniform, such as in the heterostructures or in the charge-
ordered �CO� phase. In our definition, positive Qz stands for
the distortion where the octahedron expands in the z direc-
tion while shrinking uniformly in x-y with fixed volume. The
minus sign in Eq. �7� means that the positive Qz favors the
occupancy of the �3z2−r2� state. This sign choice is justified
because positive Qz increases the lattice constant in the z
direction and consequently reduces �tpd� and Eantibonding, in-
creasing the occupation in the antibonding band which is
mainly composed of Mn �3z2−r2�. A similar consideration
leads to the minus sign in Eq. �8� �positive Q0 means a vol-
ume expansion of the octahedron�.

F. Cubic term in lattice energy

An anharmonic cubic term12 in lattice energy is also in-
cluded,

HCubic = − A�3Qi,z
3 − Qi,x

2 Qi,z� , �9�

where A in our convention has the dimension �E	−2. Note this
is the only cubic combination satisfying the lattice cubic
symmetry. With the minus sign, positive A is required to
produce the observed distortions for LaMnO3.

G. G-type AFM coupling

There is an isotropic nearest-neighbor AFM coupling �G-

type� between t2g spins S� i,

HAFM = JAFM�
i,n̂

S� i · S� i+n̂, �10�

with positive JAFM. This coupling arises from the superex-
change �SE� mechanism �virtual hopping in t2g channels� and
experimentally shows in the G-type antiferromagnetic �G-
AFM� order exhibited in CaMnO3.2 The main effect of this
term is to reduce the magnetic transition temperature. The
total Hamiltonian is then

Htot = Hband + He-e + HHund + Hlat + HJT + HB + HCubic + HAFM.

�11�

III. METHOD

We use the single-site DMFT with the SCA to solve this
two-orbital problem.7 In the DMFT approximation one re-
places the full lattice self-energy ��� , p�� by a local
�momentum-independent� quantity ���� which is deter-
mined from the solution of an auxiliary problem �quantum
impurity model� plus a self-consistency condition. The mul-
tiplicity of orbitals and interactions means that the impurity
model is not easy to solve. We use a Hubbard-Strotonovich
�HS� transformation proposed by Sakai et al.13 and the semi-
classical approximation. To evaluate the frequency sum, we

FIG. 3. �a� The ideal cubic perovskite structure for LaMnO3 and
the lattice degrees of freedom considered here: Mn can move in

arbitrary direction � i, while oxygen ions only move along the Mn-O
bond direction ui,x�y,z�. �b� Sketches of the three octahedral distor-
tion modes considered here: Q0 breathing mode and Qx and Qz

Jahn-Teller modes.
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use a procedure recently introduced by Monien.14

We also mention two simplifications here. First we do not
take into account the Coulomb potential produced by the
random distribution of cations—the only effect of replacing
some La with divalent elements is to reduce the eg electron
population. However due to the screening effect from con-
duction electrons, we believe this simplification is not cru-
cial. Second, we restrict our calculation to charge-uniform
states. Therefore we cannot obtain the charge-ordered phase
which may be energy favored around half doping.

The rest of this section is organized as follows. Two key
ingredients will be discussed: first we show how we encode
the cooperative Jahn-Teller effect in the local impurity prob-
lem; second we give some detailed formalism about SCA in
this two-orbital problem, especially how we decompose the
quartic interaction and what simplifications we make. Then
we discuss what measurements we use to fit parameters.

A. Cooperative Jahn-Teller

The local octahedral distortions �Q0 ,Qx ,Qz� at different
sites are not independent—distortion at one site inevitably
causes distortion at the neighboring sites so that some global
configurations of the lattice distortions are energy favored.
This is the cooperative Jahn-Teller effect10 which correlates
the octahedral distortions at different sites. Here we include
this intersite effect into the single-site DMFT by integrating
out all of distortion fields except for those involving the vari-
able v at the site of interest. The detailed calculation is given
in Appendix B and the resulting local effective potential is

Veff�Q0,Qx,Qz� =
Q2

2K
+ �F� · Q� , �12�

where K is an effective spring constant and �F� represents the
force exerted on the distortions at one site by static �mean-

field� distortions on the other site. Here F� measures the am-
plitude of the long-ranged order and � gives the strength of
the cooperative Jahn-Teller coupling.

B. On-site e-e

The key step in our solution of the impurity model is to
rewrite the quartic interaction into sums of complete squares
so the continuous Hubbard-Strotonovich transformations can
be applied. Using the decomposition proposed by Sakai et
al.,13 we define f��c1�

† c2�+c2�
† c1�, n�n1+n2, q�n1−n2,

s��n1,↑−n1,↓�+ �n2,↑−n2,↓�, and d��n1,↑−n1,↓�− �n2,↑−n2,↓�,
and re-express Eq. �2� as

He-e = U0n −
J

2
�f↑ − f↓�2 +

Un

2
n2 −

Uq

2
q2 −

Us

2
s2 −

Ud

2
d2,

�13�

with U0=0, Un= �3U−5J� /4, Uq= �U−7J� /4, Us= �U+J� /4,
and Ud= �U−3J� /4. Due to the fermionic identity n̂i,�

2 = n̂i,�
�i=1,2; �= ↑ ,↓�, those coefficients are not unique. For ex-
ample, U0=J /2, Un= �3U−6J� /4, Uq= �U−6J� /4, Us= �U
+2J� /4, and Ud= �U−2J� /4 is another legitimate set of
choices. If the impurity problem is solved exactly, these two

choices lead to the same result; but if approximate methods
are used, this need not be the case. However in the current
study, the coefficients will be determined by fitting to data so
this ambiguity is not important.

C. Impurity problem

The impurity problem is then described by the effective
action S=S0+Sint, where

S0 = −� d�d��a	

ij �� − ���c	,i

† ���c
,j���� �14�

and Sint=d�He-e���. The partition function is Zimp

=dQ� dS�D�c†c	e−S. Applying the HS transformations13 to de-
couple He-e, one arrives at

Sint =� d�� 1

2Un
�n

2��� +
1

2J
� f

2��� +
1

2Uq
�q

2��� +
1

2Us
�s

2���

+
1

2Ud
�d

2���� +� d��− �n���n��� + � f����f↑���

− f↓���	 + ��q���q��� + �s���s��� + �d���d���	�

+� d��Q� · T�ab	
 + JHS� · ab�� 	
�ci,	
† ���cj,
��� . �15�

To maintain the symmetries of the local interaction �SU�2�
for spin and U�1� for orbital	, we generalize the scalars �s

and �q, to vectors �� s �=��s,x ,�s,y ,�s,z�, three components	
and �� q �=��q,z ,�q,x�, two components	 and average over
their directions.15 After expressing the Sint in frequency
space, two simplifications are made. First, only zero-
frequency component for each HS field ���i�0�=�	 is kept
and, second, saddle-point approximations are applied to � f,
�d, and Q0 fields, i.e., � f =�d=Q0=0. Different methods
have been proposed for handling the i�n field.7,16 For the
two-band model studied here, we found that the method in
Ref. 7 effectively enhances the local orbital moment as the
doping increases, which is opposite of the observation, while
the method in Ref. 16 is free from this trouble. Therefore we
follow Ref. 16 and take i�n=0. After integrating out the
fermionic degree of freedom and combining the lattice ef-
fect, one gets

Veff = �Q2

2K
+

�q
2

2Uq
+

�s
2

2Us
� + A�3
Qz�2 − 
Qx�2�Qz + �F� · Q�

− T�
�n

Tr log A�i�n� , �16�

with

A = a + �Q� + �� q� · �� + �JHS� + �� s� · �� , �17�

where A is a 4�4 matrix and a is the Weiss function. The
A�3
Qz�2− 
Qx�2�Qz term comes from the simple mean-field
approximation of the cubic lattice energy.

D. Parameters and fitting

The discussion above indicates that there are seven pa-
rameters to be determined: the hopping t, effective local JT
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coupling UQ, effective magnetic coupling Us, Hund’s cou-
pling JH, core-spin AFM coupling JAFM, cooperative JT co-
efficient �, and anharmonic lattice energy A. The first six
have the dimension of energy �E� and will be measured in
units of the hopping t, while the last one has dimension 1 /E2.

The hopping strength t has been determined from the
band-structure calculation for the experimentally observed
structure of LaMnO3 to be roughly 0.5 eV ��5000 K�.8 In
contrast, the value appropriate to the ideal perovskite struc-
ture is roughly 0.65 eV. The difference is due mainly to the
effect of the GdFeO3 rotation. For the series La1−xCaxMnO3
the distortion depends weakly on the doping x �less than
10%�. For La1−xSrxMnO3 the rotation angle is more x depen-
dent �up to 30%�. Therefore calculations in which t is taken
to be independent of x may be appropriate for the Ca series
but are unlikely to be adequate for the Sr series. We focus
here on the Ca series. We note that the value t=0.5 eV is in
good agreement with the spectral weight inferred from the
optical conductivity experiments on the ferromagnetic phase
of La0.7Ca0.3MnO3.17 The JAFM is estimated from the Néel
temperature of CaMnO3, roughly 110 K�0.01 eV.2 The TN

of the Heisenberg model H=�i,jJAFM
9
4S� i ·S� j with �S� �=3 /2 ob-

tained from simple mean field is 20
9 JAFM, from which we

estimate JAFM�4.5 meV�0.009t. The superexchange argu-
ment �from virtual hopping of t2g electrons�18 also leads to
the same estimate. We further found that within the mean-
field approximation, the JAFM term only acts to reduce to
magnetic transition temperatures by 5–10 % but does not
result in any new magnetic order. Including this term how-
ever substantially increases the calculation time, so we typi-
cally set JAFM=0 to accelerate the converging processes. The
anharmonic lattice energy is taken to be A=0.006t−2 so that
our calculation reproduces the observed JT distortion around
room temperature for LaMnO3.19

The remaining parameters JH, Us, UQ, and � are fitted by
comparing the calculated and observed optical conductivities
in LaMnO3. Generally the ���� contains peaks correspond-
ing to local excitation energies of the system. If we treat the
hopping t as a small perturbation, then peaks in the optical
conductivity are roughly the energy differences between the
excited states and the ground state of the local Hamiltonian.
Since there are four states �2 spins�2 orbitals� at each site,
we expect there are three main peaks in ���� corresponding
to three two-electron final states. The saddle-point estimate
from the local potential indicates that these three peaks are
located at 2UQ�1+�� �correct spin, other orbital�, 2�JH+Us�,
�same orbital, antiparallel spin�, and 2UQ�1+��+2�JH+Us�
�other orbital, antiparallel spin� which essentially agrees with
our calculated results shown in Fig. 5. The issue is discussed
further in Ref. 20. Experimentally there are two apparent
peaks observed in LaMnO3 �Ref. 21�—the lower one is
around 2 eV ��4t�, while the higher one is around 4 eV
��8t�. There are several minor structures around 5–6 eV
which we do not consider. Fitting the two main peaks in
optical data suggests UQ�1+���4�t� and JH+Us�8�t�. We
choose JH=2.8, Us=1.4, UQ=2.1, and �=0.05. We found
that if JH+Us is fixed, the relative values of JH and Us do not
change the result much as long as UQ�Us. If UQ�Us, the
orbital order is not stable against the magnetic order. Since at

T=0 the SCA reduces to the simple mean-field approxima-
tion where expectation values are determined by their
saddle-point values, the combination UQ�1+�� uniquely de-
termines the T=0 phase. However � has more significant
effect on the nonzero-temperature phase. We choose � so as
to produce the observed TOO.

Standard parametrization

Unless indicated otherwise the results we shall present
later correspond to our standard parameters t=0.5 eV, UQ
=2.1t, Us=1.4t, JH=2.8t, JAFM=0, �=0.05, and A=0.006 / t2.
We remind the reader that this choice of t is only appropriate
for Ca-doped materials; in the Sr series the t changes with
doping. All the temperatures and frequencies are measured in
t; a simple conversion is 0.5 eV�5500 K.

IV. PHASE DIAGRAM

The calculated phase diagram as a function of doping and
temperature is shown in Fig. 4. The results qualitatively re-
produce the observed phase diagram �Fig. 1� in the sense that
the relative positions of calculated magnetic or orbital phases
are consistent with the experiments, but the temperature
scales are larger than observed.

According to the doping, we divide the phase diagram
into three regions—the undoped case �x=0, LaMnO3�, the
CMR regime �0.3�x�0.5�, and the crossover regime �0
�x�0.3�. In essence, the undoped case is cooperative JT
dominated and the signature is the lattice distortions or
equivalently the orbital order. On the other hand, the CMR
regime is DE dominated in which the system is FM or me-
tallic at low temperature. In the crossover regime, both
mechanisms play non-negligible roles to the system and we
see that as doping increases, the cooperative JT effect de-
creases �TOO decreases� while the DE mechanism gradually
takes over �TC increases�. In principle, we can extend our
calculation to x�0.5. However this region the effect of
G-type AFM coupling JAFM starts to emerge �or both double-
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FIG. 4. Calculated phase diagram as a function of doping x and
temperature. M and I stand for metallic and insulating phases. The
dashed curve is the PM/FM phase boundary, computed using t
=0.6 eV appropriate to La0.6Sr0.4MnO3.
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exchange and cooperative JT effects decrease� and a different
self-consistency condition �G-AFM� is required, so we shall
leave it for future study.

The remainder of the paper is organized as follows. We
shall devote one section for the undoped case and one for the
CMR and crossover region for more detailed discussions,
then discuss the discrepancies between calculated and ob-
served results. What important physics we are missing in our
model or approximation and their effects to the current re-
sults will be stated. We also point out here that for the spec-
tral functions we shall present, the Fermi energy is at zero.
Without further indications, �, �, and A stand for resistivity,
conductivity, and spectral function, respectively.

V. UNDOPED CASE

A. Overview

Experimentally LaMnO3 is insulating for all temperatures
at least up to 800 K,21–23 which is slightly greater than the
orbital-ordering temperature TOO. When the temperature is
lowered, it first goes from PO/PM to OO/PM at TOO
�780 K �0.135t�, then from OO/PM to OO/AFM at
TA-AFM�140 K �0.04t�, where temperatures in kelvins are
experimentally derived while numbers in parentheses are
from calculation. After a discussion about the nature of the
insulating behavior, we examine the physical origins of the
exhibited phases.

B. Transport and excitation spectrum

In this subsection we present our calculated optical con-
ductivities for the stoichiometric end member LaMnO3. We
show that the calculated conductivities are in good agree-
ment with experiment and that the agreement implies that
LaMnO3 is a Mott insulator. A more careful discussion re-
garding Mott insulator is given in Ref. 20.

To establish our claim we present in Fig. 5 the optical
conductivities for electric fields parallel to the x-y plane
�solid line� and perpendicular to it �dashed line� at tempera-
tures T=0.16t �greater than TOO�, T=0.07t �below TOO,

above the magnetic-ordering temperature TA-AFM�, and T
=0.02t �roughly 0.5TA-AFM�. The integrated optical conduc-
tivities up to 3 eV qualitatively agree with experiments on
LaMnO3.23 At T=0.16t we see that the conductivity has two
peaks at ��4t and 8t, and a soft gap at �=0. If we suppress
the orbital order, forcing PO/PM solution down to lower
temperature, we find that the low-frequency conductivity
decreases.20 When the temperature is lowered to T=0.07t,
where the orbital order is well established, the peak positions
remain essentially unchanged. An anisotropy produced by
the orbital order appears and the gap at low frequency be-
comes sharper.

As the temperature is further decreased into the A-type
antiferromagnetic state, the peaks sharpen and the anisotropy
becomes more pronounced with an increase in �xx and a
decrease in �zz for ��4t; the converse behavior occurs in
the ��8t regime. This qualitative behavior was used by
authors of Refs. 21 and 24 to identify the lower feature as the
transition to the maximal-spin, orbitally disfavored final state
and the higher feature as the transition to a lower-spin, orbit-
ally favored state. We make the same identification here and
have adjusted the crucial parameters UQ and Us to place
these peaks at the experimentally correct energies. Referring
now to Fig. 5�a�, we see that for these parameters the corre-
lations are already strong enough to produce an insulating
state in the absence of the long-ranged order which is one
characteristic of Mott insulator, although the “soft” nature of
the gap places the materials close to the Mott insulator/metal
phase boundary.

C. Origins of exhibited phases

Along the temperature-descending direction, we summa-
rize our understanding with the following statements:

�1� The staggered Qx order is a consequence of the coop-
erative JT effect, i.e., a combined effect from local JT inter-
action and lattice elastic energy.

�2� The energy difference between �� ,� ,�� Qx and
�� ,� ,0� Qx orders is very small, on the order of meV.
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FIG. 5. Optical conductivities for �a� T=0.16t ��TOO� �dotted� and T=0.07�0.5TOO, OO/PM phase, and �b� T=0.02t�0.5TA-AFM,
OO/A-AFM phase. The heavy solid or dashed curves represent the in-plane or out-of-plane optical conductivities, respectively. To convert
the frequency scale to physical units, we note that the band theory indicates t=0.5 eV so t=4 corresponds to 2 eV.
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�3� The uniform Qz order is a consequence of the stag-
gered Qx order, arising from the cubic term in lattice energy.

�4� The uniform −�+�Qz order reduces �enhances� the in-
terlayer AF coupling and decreases �increases� the Néel tem-
perature.

To justify the first statement, we perform the calculation
without cooperative Jahn-Teller effect and obtain an orbital-
ordering temperature of 0.06t ��330 K�, which is far too
low compared to the observation. The cooperative Jahn-
Teller coupling arising from the corner-shared octahedra fa-
cilitates the staggered Qx order. The physical picture is quite
straightforward—a Qx distortion on one site induces a −Qx
distortion on neighboring sites on the same x-y plane.

The second statement concerns the energy difference be-
tween the �� ,� ,0� and the �� ,� ,�� Qx orders. There are
two possible sources. The first one is the structure in the
lattice contribution. The simple form of the lattice
Hamiltonian25 we used in our numerical calculation has the
same restoring force for both distortions, but a more general
form given in Eq. �5� will distinguish them. Assessing this
possibility requires a density functional theory �DFT� calcu-
lation of phonon spectrum as is discussed in Ref. 25. The
second possibility is the electronic energy, which we now
estimate from the SE �essentially second-order perturbation�
argument. The nearest-neighbor �t� and second-neighbor �t��
hopping processes which give rise to superexchange are il-
lustrated in Fig. 6.

In terms of the local JT splitting of �Q, we find that the
second-order superexchange calculation yields that the en-
ergy gain for both orders is − 9

4
t2

�Q
. Therefore within SE ap-

proximation, nearest-neighbor hopping does not lift the de-
generacy. However the second-neighbor hopping does lift the
degeneracy. We find that the �� ,� ,0� Qx state gains −4 t�2

�Q

more energy than the �� ,� ,�� state. From our DFT study,8

t��0.035 eV and �Q�1.4 eV. Therefore the energy differ-
ence between these two orders is on the order of meV, which
is very small compared with other energy scales in the prob-

lem. We therefore believe that the lattice effect is dominant.
We model this by allowing only the �� ,� ,0� order in our
calculation.

Within our approximation, the uniform Qz order is in-
duced by the local Qx distortion via the cubic term12 in lat-
tice energy, so the strength of the Qz order is proportional to
Qx

2. Figure 7 shows the magnitudes of the staggered Qx and
uniform Qz orders at T=0.1t. For these parameters we found
Qz�0.2Qx

2.
The fourth statement concerns the relation between the

magnetic order and orbital order. In particular it is the answer
to the question of how in the presence of a large staggered Qx

order a small uniform Qz order affects the magnetic order.
We found that a small �Qz order can change the Néel tem-
perature TA-AFM by as much as a factor of 2. This effect can
be qualitatively understood by comparing the effective mag-
netic couplings Ji �i=z out of plane and x in plane� for dif-
ferent orbital orders using superexchange arguments. The
starting point is that for each site the electron occupies the
orbital ����cos ��1�+sin ��2� �0����� which is the
ground state of −�Qz�̂z+Qx�̂x�. Since the strength of Qx order
is at least three times larger than that of Qz order �see Sec.
II G�, we consider Qz / �Qx� ranging from −0.3 to 0.3. As
shown in Fig. 8 in the presence of the staggered Qx order, the
system is divided into two sublattices A and B on which the
electron occupies orbital ��A� and ��B�. Defining cos 2�
=Qz /�Qx

2+Qz
2 and sin 2�=Qx /�Qx

2+Qz
2, one finds that the

occupied orbitals at A and B are ��� and �−��. Using the
second-order perturbation, one estimates the magnetic cou-
plings from the energy difference between FM and AFM spin
configurations �J=EFM−EAFM� as

Jz��� = −
cos2 � sin2 �

�JT
+

cos4 �

�Hund
+

cos2 � sin2 �

�Hund + �JT
,

FIG. 6. Illustrations of superexchange processes in the presence
of different �� ,� ,0� and �� ,� ,�� Qx orbital orders. A and B are
two sublattices occupying local orbitals ��1�+ �2�� /�2 and ��1�
− �2�� /�2, respectively. The hopping matrices are directional and the
explicit forms are given in Ref. 8.
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Jx��� = −
3/16 + cos2 � sin2 �

�JT
+

cos2 � − 3 sin2 �

4�Hund

+
3/16 + cos2 � sin2 �

�Hund + �JT
, �18�

where �JT and �Hund are orbital and magnetic splittings, re-
spectively. From previous discussion we found �JT�2 eV
�4t and �Hund�4 eV�8t. The corresponding results are
given in Fig. 9, where � /�=0.2,0.25,0.3 correspond to
Qz / �Qx�= +0.3,0 ,−0.3, respectively. We see that for these �
values the in-plane magnetic coupling is always FM, while
the out-of-plane changes from FM to AFM when � /� varies
from 0.3 to 0.2 �zero coupling at �=0.22��. This SE estimate
therefore implies that a positive Qz order is required to pro-
duce the observed A-AFM order. In our DMFT calculation,
we always find the A-AFM order at low temperature, but we
indeed find that the Néel temperature drastically �50%� in-

creases when we go from small −Qz to small +Qz order. Thus
the trend of variation in TN with strain is correctly captured
by the superexchange calculation, but other processes also
contribute the overall sign. This result indicates that the in-
teraction is not strong enough to justify the superexchange
approximation but that the superexchange results do capture
one aspect of the important physics.

VI. CMR REGIME AND CROSSOVER

A. CMR regime (0.3�x�0.5)

We choose x=0.3 �N=0.7� as being representative of the
CMR region. For this doping, the system goes from PO/PM
to PO/FM around 275 K. The transition is accompanied by
an insulator/metal transition which is shown in Fig. 1 of
Chapter 1 of Ref. 26. At this transition the d� /dT changes
sign. Figure 10�a� shows the calculated ��T�. We indeed find
a M/I transition across the Curie transition. This M/I transi-
tion is also reflected in the optical conductivities shown in
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FIG. 9. �Color online� The out-of-plane �Jz� and in-plane �Jx�
magnetic couplings estimated from Eq. �18� with �JT=4t and
�Hund=8t. The negative sign favors FM coupling. �=0.25� repre-
sents the case without uniform Qz order. Positive and negative Qz

orders correspond to the region ��� /4 and ��� /4, respectively.

FIG. 8. Illustration of the �� ,� ,0� Qx and a uniform Qz orbital
order. The local orbital states are same in the z direction ���A� or
��B��, while they are alternate between ��A� and ��B� on the x-y
plane.
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FIG. 10. �Color online� �a� In-plane dc resistivity �xx�T� as a function of temperature for x=0.3. �b� In-plane optical conductivities for
x=0.3 and T=0.12t–0.04t.
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Fig. 10�b�. Our calculations qualitatively agree with the ex-
perimental data on La0.7Ca0.3MnO3. To be more quantitative,
Table I compares the kinetic energy defined as K
= � �a

e2 � 2
�0

2.7 eV����d� obtained from both experiments17 and
our theoretical calculation. The reasonable agreement sug-
gests that our model well captures the main physics �right
degree of freedom and reasonable effective interactions� be-
low 2.7 eV. However there are several differences between
calculation and data. First the experimental values are sys-
tematically larger. Two reasons are that the experiments in-
evitably involve transition from lower oxygen bands to
Fermi level which is not included in our model and our cal-
culation yields orbital order at low T which does not occur in
the actual material. In addition our calculation overestimates
the density of states around zero frequency at high-
temperature PM phase. In terms of dc resistivity, this means
that the high-T PM phase is not insulating enough. We shall
discuss the possible physics accounting for this inconsistency
later.

One issue from earlier calculations is that the TC for pure
DE model is roughly three times higher than the observed
one.27 The Curie temperature TC with JAFM=0 obtained here
�roughly 0.08t� is �40% lower than that of Ref. 27. Intro-
ducing G-type AFM coupling JAFM ��0.01t from our fit�
further reduces TC to 0.075t�412 K, not too far from the
experimental value of �275 K. We expect that a large frac-
tion of the remaining difference arises from spatial and ther-
mal fluctuation effects not captured by our mean-field theory.

B. Crossover regime (0.1�x�0.3)

In this doping range, when the temperature is lowered, the
system goes from PO/PM to OO/PM, then to OO/FM phase
and we take x=0.2 �N=0.8� as a representative doping. In

this region, both cooperative JT and DE mechanisms are
important. These two mechanisms are competing and not
compatible in the following sense—the cooperative JT tends
to break the in-plane symmetry which facilitates the stag-
gered Qx order and localizes electrons, while the DE wants
the system to be uniform and delocalizes electrons. This
competition is shown in Fig. 11�a�, where the magnitude of
the staggered Qx order is plotted. We find that when lowering
the temperature, the magnitude of Qx order increases above
the Curie temperature, and then quickly saturates below TC.
If we force the PM solution at low temperature, then the
staggered Qx order keeps on increasing as T is decreased.
This is consistent with the pair distribution function �PDF�
measurements28 which show that below the Curie tempera-
ture at x=0.25, the peak associated with JT distortion de-
creases when lowering the temperature. Figure 11�b� shows
the resistivity as a function of temperature. We see that the
system is an insulator at high temperature and a downturn in
��T� happens at the Curie temperature, below which DE ef-
fects gradually take over and the system is metallic. Finally
we point out that around x=0.3, TOO and TC happen around
the same temperature �around 0.1t in Fig. 4�. We do not
resolve the behavior around this point carefully.

VII. DISCUSSION

A. Summary

With a fixed set of parameters, our calculations semiquan-
titatively produce the observed phase diagram—the relative
positions of magnetic and orbital orders on the doping-
temperature plane are consistent with experiments. In par-
ticular the magnetic transition temperatures �both Néel and
Curie temperatures� are in reasonable agreement with data,
with calculated values being about 1.5 times higher than the
measured values. Some part of the difference arises from the
fluctuation corrections to the mean-field theory, which are
typically on the order of 30% in three dimensions. As for the
excitation spectra, our results are consistent with observed
optical conductivity. In particular we reproduce the peak po-
sitions �this is how we fit some of the parameters� and the
corresponding amplitudes for a wide range of dopings and

TABLE I. Kinetic energies in eV obtained from both experi-
ments and our calculation, using t=0.5 eV.

Expt. �Ref. 17� Calc.

FM 0.22 0.152 �T=0.04t�
PM 0.1 0.076 �T=0.1t�
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FIG. 11. �a� The amplitude of staggered Qx order as a function of temperature. The dashed curve is calculated at paramagnetic phase. �b�
Resistivity for x=0.2 �N=0.8� as a function of temperature. The vertical dashed lines indicate the transition temperatures.
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temperatures. We believe these agreements to experiments
indicate that our model and fittings capture the essential
physics of the manganite problem. In this section we give a
more detailed discussion on several issues and on inconsis-
tencies with data regarding our results.

B. Role and effect of GdFeO3 rotation

Our results indicate that the local interaction strength is
only slightly stronger than the critical value of Mott
transition,20 implying that the system is very sensitive to the
hopping t. As discussed in Refs. 8 and 26, the hopping is
very sensitive to the structure. In particular the manganites
form in a distorted version of the ideal perovskite structure.
The most important distortion appears to be a GdFeO3-type
rotation which buckles the Mn-O-Mn bond. Table II summa-
rizes the relation between the bond angle, the cation compo-
sition, and the hopping. For a perovskite material AMnO3,
the Mn-O-Mn bond-angle as a function of A-site composi-
tion is taken from Ref. 26 and the corresponding hoppings
were calculated in Ref. 8. From this table we infer that using
the same hopping t=0.5 eV for LaMnO3 and Ca-doped
manganite is reasonable, but is not for the Sr-doped one.

In Ref. 20, we showed that for t=0.65 eV LaMnO3 is not
a Mott insulator. When using t=0.6 eV to simulate
La0.7Sr0.3MnO3, we find that: �1� the Curie temperature in-
creases from �420 K �t=0.5 eV� to �530 K �shown in the
dashed curve in Fig. 4� and �2� the high-temperature PO/PM
phase becomes almost metallic �d� /dT is very flat, and the
minimum around ���=0� almost vanishes	. The optical con-
ductivities for t=0.6 eV for two temperatures, just above
and below TC, are shown in Fig. 12. Both of our findings �TC
and ����	 are consistent with the difference between
La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3 reported in Ref. 17. We
emphasize, however, that the main message here is that for
the given local interaction strength, the system is very sensi-
tive to the bandwidth and any uncertainty in estimating pa-
rameters could easily drive the system to either Mott insulat-
ing or metallic phases.

C. Orbital ordering

We found that with our standard parameters, the calcu-
lated TOO decreases too slowly as a function of doping x �see
Fig. 4�. Fine-tuning parameters �e.g., varying � and UQ� can
correct this problem, but this degree of data fitting is some-
what arbitrary so we do not pursue it here.

However, we point out that using our standard parameters,
the orbitally disordered and orbital ordered phases behave

very similarly as far as the excitation is concerned. To dem-
onstrate this we show in Fig. 13 the optical conductivities for
x=0.3 and T=0.08t at both OO and PO phases. One sees that
the difference is very limited. Furthermore we found that the
Curie temperatures obtained from these two phases are very
close �difference �5%�. These results suggest that the cru-
cial electronic physics is controlled by local distortions
which �because the correlations are strong� are well formed.
The important effect caused by the orbital order is actually
the uniform Qz order which introduces an isotropy to the
system and whose sign substantially affects the Néel tem-
perature for the undoped case.

We also mention here that the effective Mn-Mn hopping
being through oxygen p orbitals also introduces an intersite
orbital coupling29 which is very similar to the cooperative JT
effect and is referred to as the “charge-transfer” mechanism.
This can be understood from the superexchange argument
where we consider a simple Mn-O-Mn system and compare
energies of different orbital configurations by the perturba-
tion expansion of the Mn-O hopping tpd.30 In the model
where the oxygen orbitals are not included, those “virtual

TABLE II. The compositions of A-site elements, their corre-
sponding Mn-O-Mn angles, and effective hoppings t.

A-site Bond angle Hopping �ratio�

La1, ideal 180 0.65 eV �1�
La0.7Sr0.3 166 0.58 eV �0.9�
La0.7Ca0.3 160 0.53 eV �0.81�
La1, real 155 0.5 eV �0.78�
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FIG. 12. The optical conductivities calculated for parameters
which simulate La0.7Sr0.3MnO3. Solid and dashed curves are com-
puted above and below the Curie temperature. To convert the fre-
quency into physics units �eV�, divide the x axis by 2.
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FIG. 13. �Color online� The optical conductivities calculated at
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processes” lead to an spin-independent orbital-exchange
interaction29 as

Ho-ex = A �
i,	=x,y,z

Ii
	Ii+	

	 , �19�

with Iz=�z, Ix=− 1
2�z−

�3
2 �x, Iy =− 1

2�z+
�3
2 �x, and A as a positive

coefficient. The simple mean-field approximation to the term
produces an external field on site O as

Ho-ex = A �
	=x,y,z

Io
	�
I	�+	 + 
I	�−	�

= A��z
1
�6

�2Ez − Ex − Ey� + �x
1
�2

�− Ex + Ey�� ,

�20�

with Ez= 2
�6

�	=�z
�z�	 and Ex�y�=
−1
�6

�	=�x��y��
�z�	

+ �−��3
�x�		, which is of the same form of the cooperative
JT effect derived in Appendix B. Therefore in our approxi-
mation where the orbital order and structural JT distortions
are equivalent, including the charge-transfer mechanism
amounts to a reinterpretation of our cooperative JT parameter
�=2A and does not change any results.

D. High-T insulating phase

Using the standard parameters, our calculation obtains an
insulating behavior at high-T PO/PM phase for doping rang-
ing from x=0 to x�0.4. With the semiclassical approxima-
tion, the electron-electron interaction is replaced by some
classical fields and the impurity problem becomes
polaronlike.7,16 The high-T insulating phase away from zero
doping should be therefore interpreted as a phase separation
between N=1 orbitally fully polarized state and N=0 state.
Since our estimate indicates20 that the on-site Coulomb in-
teraction is roughly three times stronger than the electron-
lattice interaction, the semiclassical method may overesti-
mate the insulating behavior under single-site DMFT
approximation.

The other issue is that compared to the experiments, our
calculations overestimate the optical conductivity around
zero frequency at high-temperature PO/PM phase. This
might be due to short-ranged correlations not included in the
single-site DMFT approximation. According to recent cluster
DMFT studies of the one-band Hubbard model,31,32 includ-
ing the short-range correlation significantly reduces the low-
energy density of states. We also observe that in doped CMR
systems there is a strong empirical association between insu-
lating behavior �d� /dT�0 with � as dc resistivity and T as
temperature� and strong short-ranged Jahn-Teller �polaron
glass� order.33–35 Including spatial correlations beyond the
single-site approximation is an important topic for future re-
gard.

E. Missing phases

Our calculation misses two phases. First around x=0.5, a
charge-ordered �CO� phase occurs, accompanied by one par-
ticular orbital and magnetic order called CE phase1 which
requires a very large unit cell �4�4� on the x-y plane. Our

in-plane unit cell is not large enough to include this phase.
However at x=0.5 we do find that the convergence becomes
more and more difficult when lowering the temperature �be-
low T=0.04t�, which may be an indication of CE phase.
Second, around x=0.1–0.2 we do not get the FM insulating
phase at low temperature.

F. Limits of approximation

Now we discuss the limits of our approximation. First we
discuss the breathing-mode polaron effect. In the current ap-
proximation the breathing-mode coupling is treated in simple
mean field and therefore has no effect in the charge-uniform
phase. To include the breathing-mode polaron, one has to
consider the fluctuation of the breathing-mode distortion by
integrating over Q0 field when computing the impurity
model.16 Since the real time-consuming computation in-
volved in our approach is doing multidimensional integral
�see Sec. III C�, performing an additional integral is now
beyond our computational power. It is possible that the
breathing-mode polaron is also crucial for the charge order at
x=0.5. Since with breathing-mode polarons electrons are al-
ready localized but just randomly distributed at high tem-
perature �therefore the system is not charge uniform, but can
be treated within single-site DMFT �Ref. 16�	, the CO phase
is then formed at low temperature to gain more energy from
the gap. Without the polaron to localize electrons, it is very
hard to get CO phase �usually it requires some nesting in the
band structure, which is not the case here�.

Finally we point out that the SCA does not treat the quan-
tum physics of the Mott insulator faithfully. To be specific,
we take the one-band Hubbard model with strong coupling
as an example. With the SCA the metal/insulator transition
occurs at U�Uc1 so the effect of the Kondo peak is absent.
Further, independent of doping x, the upper and lower Hub-
bard bands have the same weight with SCA, while in reality,
the upper Hubbard band represents adding one electron to
the occupied site whose weight is ought to be 1−x. This
consideration implies that the SCA works well at half filling
and becomes less reliable away from it. This is illustrated in
Fig. 14, which shows the spectral functions for N=1 �half
filling� and N=0.8. We see that in both cases the upper and
lower bands have the same weight. For our two-band man-
ganite model in the strong-coupling limit, the SCA solution
for PO/PM phase results in four bands with weights 1−x,
1+x, 1+x, and 1−x �from low energy to high�. However the
third peak corresponds to adding one electron to the state
with same orbital but opposite spin whose weight should be
1−x. Based on the same argument we conclude that the SCA
for two-band model is more reliable without doping than
with doping. A more accurate treatment of the doped phase
requires an improved, fully quantum impurity solver.

VIII. CONCLUSION

A general model for bulk manganite, including electron-
electron, electron-phonon, and phonon-phonon interactions,
is formulated and solved by semiclassical approximation.
Our calculation is qualitatively good in the sense that it
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yields the right distribution of phases on the �x ,T� plane and
produces the correct low-energy excitations as described in
Sec. V B. The physical origin of each exhibited phase is
identified within our model. For the LaMnO3 below TOO, the
exhibited in-plane staggered Qx order is mostly driven by the
cooperative Jahn-Teller �lattice effect� rather than the pure
electronic effect, while the uniform −Qz order is a conse-
quence of the anharmonic term in lattice energy. Our results
indicate that the local interaction strength is only slightly
stronger than the critical value for Mott transition and the
system is consequently very sensitive to mechanisms con-
trolling the effective bandwidth. With this local interaction
strength, the orbitally ordered and orbitally disordered
phases behave very similarly. As the doping increases, the
electrons start to delocalize and after x�0.3, the double-
exchange mechanism dominates so orbital order vanishes
and the system has the FM or metallic ground state.

Discrepancies between our calculation and the observa-
tions are also carefully discussed. In particular our calcula-
tions overestimate the optical conductivity around zero fre-
quency at high-temperature insulating phase. This
inconsistency leads us to conclude that the key physics we
are missing in the calculation is the short-ranged correlation.
In the future we will include the short-ranged correlation and
also adopt a better impurity solver for this problem.
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APPENDIX A: THE VALIDITY OF SEMICLASSICAL
APPROXIMATION

In this appendix we examine the validity of the semiclas-
sical approximation by comparing the excitation spectrum

computed using the SCA results to the exact eigenstates of
the local Hamiltonian. As discussed in Sec. II, we assume
that the crystal field �ligand field� is large enough that the t2g
levels are in their maximum spin state and that the pair hop-
ping between t2g and eg orbitals is quenched. In this case the
on-site Hamiltonian in the eg manifold is

Hloc = �
�,��

�U − J�n1,�n2,�� + U �
i=1,2

ni,↑ni,↓ + J�c1,↑
† c1,↓

† c2,↓c2,↑

+ H.c.� − 2Js�1 · s�2 − 2JHS�c · �s�1 + s�2� + ��n1 − n2� .

�A1�

Here s�i=�	
ci	
† �� 	
ci
, S�c has magnitude of 3/2, and � is the

crystal-field splitting arising from the long-range Jahn-Teller
order. In spherical symmetry JH=J; we assume this hence-
forth. The eigenstates are characterized by the particle num-
ber, total spin, total eg spin, and the orbital configuration.
There are 16 one-electron and 24 two-electron eigenstates,
taking the configurations of the core spin into account.

To compare the exact solution of the local Hamiltonian to
experiment and the semiclassical calculation, we need the
quantity �E�S�=E�n=2,S�+E�n=0,S=3 /2�−2E�n=1,S
=2� which gives the locations of peaks in the optical conduc-
tivity in the atomic limit. Table III lists the eigenstates and
the corresponding transition energies.

Determining the coupling strength in Eq. �A1� by fitting
the optical data21 is described in detail in Ref. 20. Here we
simply quote the results, U=2.3�0.3 eV and 2��J
�0.5 eV. Following the analysis and notations in Ref. 20,
there are three optical peaks located at

�EHS = U − 3J/2 + 2� ,

�ELS
− = U + 9J/2 + 2� − �4�2 + J2,

�ELS
+ = U + 7J/2 + 2� . �A2�

We now compare this result to the semiclassical calcula-
tion. From Fig. 5 we observe three peaks in the optical con-
ductivity: a low-lying peak at energy 2UQ which we identify
with �EHS, an intermediate peak at energy Us+JH which we
identify with �ELS

JT , and a higher peak at the sum of these
energies. This highest peak represents physically the states
1E+�3 /2� and 3A2�3 /2� where both orbitals are occupied
while the total spin �including the core spin� is 3/2. The
3A�3 /2� state in the large-� limit represents a state where
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FIG. 14. Spectral function calculated for one-band Hubbard
model for bandwidth 6t and on-site U=16t at T=0.1t. For both half
filling �solid� and N=0.8 �dashed�, the lower and upper bands have
the equal weights.

TABLE III. The two-electron eigenstates and the corresponding
transition energies.

State �E Semiclassical

3A2�5 /2� �6� U−3J /2+2� 2UQ
3A2�3 /2� �4� U+7J /2+2� 2�Us+JH�+2UQ
3A2�1 /2� �2� U+13J /2+2� Not accessible
1E−�3 /2� �4� U+9J /2+2�−�4�2+J2 2�Us+JH�
1A�3 /2� �4� U+9J /2+2�+�4�2+J2 Not accessible
1E+�3 /2� �4� U+7J /2+2� 2�Us+JH�+2UQ
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both electrons occupy energy-disfavored orbital which can-
not be reached by a single hopping and has no correspon-
dence in the SCA. It is the defect of the semiclassical ap-
proximation that the highest peak is too high in energy.
However this defect is not serious because the high-lying
states are not important for our analysis.

APPENDIX B: EFFECTIVE POTENTIAL

In this appendix, we describe in detail how we encode the
intersite lattice coupling into the single-site impurity prob-
lem. The basic logic is the following. First we write down
the energy functional for the lattice problem in terms of
fields labeled by site index �i which couples to some local
quantity �i. Then the local partition function is obtained by
integrating out all fields except the field at origin site �0. The
long-range order corresponds to some spatial pattern of �i
which generates an extra coupling to local field �0. This
extra coupling depends on the long-range order containing
information from other sites �i, i�o. We first give a general
functional for lattice elastic energy then work out the one-
dimensional �1D� case explicitly with a specific lattice
model. Finally we derive the formalism used in our calcula-
tion.

1. General functional of elastic energy

The goal here is to derive the elastic energy in terms of
three even-parity MnO6 distortion modes. As mentioned in
the text, the lattice degree of freedom includes oxygen mo-
tion along the Mn-O bond, ui, and manganese general dis-

placement � i. Assuming that the spring constant between ad-
jacent Mn-O is 1 /K1, a general elastic energy is

Elat =
1

2K1
�
i,a

��i
a − ui

a�2 + �i
a − ui−1

a �2	 +
1

2 �
k�,ab

Eab�k��k�
a
−k�

b

+
1

2 �
k�,ab

Dab�k��uk�
au−k�

b

=
1

K1
�
k�,a

�k�
a
−k�

a + uk�
au−k�

a − �1 + e+ika�uk�
a
−k�

a 	

+
1

2 �
k�,ab

Eab�k��k�
a
−k�

b +
1

2 �
k�,ab

Dab�k��uk�
au−k�

b , �B1�

where Eab�k�� and Dab�k�� represent general harmonic cou-
pling Mn-Mn and O-O displacements, and a ,b sums over
x ,y ,z. To get rid of the Mn motions, we use the saddle-point
approximation

�Elat

��−k�
a �

=0 which leads to

k�
a =

1

2K1
�

b

�I� + E� �k��/�2�	ab
−1�1 + eikb�uk�

b, �B2�

and the lattice energy in this approximation is Elat

=�k�,abuk�
am̃ab�k��u−k�

b , with

m̃ab�k�� =
ab

K1
−

1

4K1
2 �1 + e−ika��I� + E� �k��/2	ab

−1�1 + eikb�

+
1

2
Dab�k�� . �B3�

Defining strain variables vi
a=ui

a−ui−a
a and vk�

a=uk�
a�1−e−ika�,

we express Elat in terms of vk�
a, which is

Elat = �
k�,ab

vk�
amab�k��v−k�

b , �B4�

where mab�k��= 1
1−e−ika

m̃ab�k�� 1
1−eikb

. The advantage of express-
ing Elat in strain variables is that they are closer to the even-
parity distortion modes defined in Eq. �6�. mab�k�� allows us
to estimate the proximity effect for structural order. In par-
ticular if we are interested in how �� ,� ,0� Qx order propa-
gates along the z direction, then the quantity to study is
mab�� ,� ,kz�. The explicit form of mab�k�� is model depen-
dent, and here we only consider spring constants between
adjacent Mn-O �1 /K1� and Mn-Mn �1 /K2� which are of most
importance.

2. One-dimensional Mn-O chain

Now we explicitly work out the local effective potential in
the one-dimensional case. The procedure is outlined here. We
first adopt the procedure described in Appendix B, Sec. B 1
to express �with saddle-point approximation� the elastic en-
ergy in terms of strain variables in real space vi. Then the
effective potential is obtained by integrating out all vi except
the one at origin v0. For 1D Mn-O chain, we drop the index
a ,b since there is only one direction and the elastic lattice
energy is

Elat =
1

2K1
�

i

��i − ui�2 + �i − ui−1�2	 +
1

2K2
�

i

�i+1 − i�2

=
1

K1
�

k

�uku−k + k−k − uk−k�1 + eik�	

+
2

K2
�

k

sin2� k

2
�k−k. �B5�

For this case, E�k�
2 = 2

K2
sin2�k /2� and D�k��=0. The saddle-

point approximation
�Elat

�−k
=0 implies

k =
uk�1 + eik�

2 + 4K̄ sin2�k/2�
, �B6�

where K̄=K1 /K2. The effective energy functional Elat �as a
function of uk only� is therefore

Elat =
2K̄ + 1

K1
�

k

sin2�k/2�

1 + 2K̄ sin2�k/2�
uku−k

=
2K̄ + 1

4K1
�

k

1

1 + 2K̄ sin2�k/2�
vkv−k. �B7�
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To see how local strains at different sites couple to one
another, we express Elat in the real space vi,

Elat =
2K̄ + 1

4K1
�

k

1

1 + 2K̄ sin2�k/2�
vkv−k

=
1

N

2K̄ + 1

4K1
�
i,j

�
k

eik�ri−rj�

1 + 2K̄ sin2�k/2�
viv j

=
2K̄ + 1

4K1
�
i,j

f�i − j�viv j , �B8�

where

f�i − j� =
1

N
�

k

eik�i−j�

1 + 2K̄ sin2�k/2�

=
1

2�
�

−�

�

dk
cos�kn�

1 + 2K̄ sin2�k/2�

��k → N
2�−�

� dk for lattice constant a=1�. For this simple
model, the integral can be done analytically �the most
straightforward way may be changing variable z=eik and
then using the residue theorem�. By defining 	=1+K2 /K1,
Elat becomes

Elat =
2K̄ + 1

4K1
�	 − 1

	 + 1�
i,j

�	 − �	2 − 1��i−j�viv j

=
1

2K
�
i,j

��i−j�viv j , �B9�

where K=2K1 /�2K̄+1 and �=	−�	2−1�1. Note that the
coupling between local strains is exponentially decaying
since �n=e−a�n� with a=−ln �.

Including the electron-lattice coupling �ihivi, the total en-
ergy is

E = Elat + Ee-l = �
ij

Aijviv j + �
i

hivi, �B10�

where hi in this case is the charge density at site i. The
effective potential at site 0 is given by integrating out the
degrees of freedom of all other sites v1 ,v2 , . . . ,vN, i.e.,

� dv0e−Veff�v0� =� dv0e−A00v0
2� dv1 ¯ dvN

�exp�− �� A0iv0vi − �� Aijviv j

− �� hivi	
=� dv0 exp�− �A00 −

1

4�� A0iAij
−1A0j�v0

2

+
1

2�� hjAij
−1A0iv0 +

1

4�� hiAij
−1hj� ,

where �� means site 0 is excluded in the summation.
The effective potential is

Veff�v0� = Dv0
2 −

1

2�� hjAij
−1A0iv0 + const, �B11�

where D=A00− 1
4��A0iAij

−1A0j. We see that the charge density
at site hi�i�0� also contribute to the “external” field cou-
pling to v0.

3. Three-dimensional case

The 1D result can be easily generalized to the three-
dimensional �3D� case. For the model we considered, the
lattice energy in k space is

Elat =
2K̄ + 1

4K1
�

a=x,y,z
�
ka

1

1 + 2K̄ sin2�ka/2�
vka

v−ka
.

�B12�

From this expression, we find that in our simple model there
is no proximity effect for �� ,� ,0� order of any kind since
there is no coupling between different components of k�. We
also notice that the energy cost is at its minimum when ka
=� �staggered order of any kind�. Therefore at integer occu-
pancy the system prefers some staggered long-range order
since the staggered order lowers electronic energy.

Assuming that � is small, thus only including the nearest-
neighbor coupling, the lattice energy in real space is

Elat =
1

2K
�

i,a=x,y,z
��vi

a�2 + 2�vi
avi+a

a 	 . �B13�

One can also express Elat in three MnO6 even-parity modes
Q by the following transformation:

�Qi,0

Qi,x

Qi,z
� =�

1
�3

1
�3

1
�3

1
�2

−
1
�2

0

−
1
�6

−
1
�6

2
�6

��vi,x

vi,y

vi,z
� � U�vi,x

vi,y

vi,z
� .

However it is more convenient to work in strain field v until
we obtain the local effective potential which will be ex-
pressed in Q.

The electronic source fields hi are defined as

hi,0 = 
eabci,a
† ci,b� ,

hi,x = 
�ab
x ci,a

† ci,b� ,

hi,z = 
�ab
z ci,a

† ci,b� ,

and the local electron-lattice coupling is

EJT = − h0Q0 − �hxQx + hzQz� = − �vxHx + vyHy + vzHz� ,

�B14�

with

Hx =
1
�3

h0 +
1
�2

hx −
1
�6

hz,
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Hy =
1
�3

h0 −
1
�2

hx −
1
�6

hz,

Hz =
1
�3

h0 +
2
�6

hz. �B15�

Following the procedure for one-dimensional case, the ef-
fective potential at the origin site is therefore

Veff = D�vx
2 + vy

2 + vz
2� +

1

2
E� · v� �B16�

=D�Q0
2 + Qx

2 + Qz
2� +

�

2
F� · Q� , �B17�

with Ex�y,z�=��Hjx�y,z�,x�y,z�Aix�y,z�,jx�y,z�

−1 A0,ix�y,z�
and F� =UE� . ix�y,z�

labels the sites along the x�y ,z� axis. We call F� effective

external field. Keeping only the linear term in �, we have

D =
1

2K
�1 − �2/4� �

1

2K
, �B18�

Ex = H+x̂,x + H−x̂,x

Ey = H+ŷ,y + H−ŷ,y

Ez = H+ẑ,z + H−ẑ,z �B19�

and

F� = � 1
�3

�Ex + Ey + Ez�,
1
�2

�Ex − Ey�,
1
�6

�− Ex − Ey + 2Ez�� .

�B20�
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